The Integumentary System

The Integumentary System

- Integument is skin
- Skin and its appendages make up the integumentary system
- A fatty layer (hypodermis) lies deep to it
- Two distinct regions
 - Epidermis
 - Dermis

Functions of skin

- Protection
 - Cushions and insulates and is waterproof
 - Protects from chemicals, heat, cold, bacteria
 - Screens UV
- Synthesizes vitamin D with UV
- Regulates body heat
- Prevents unnecessary water loss
- Sensory reception (nerve endings)

Epidermis

- Keratinized stratified squamous epithelium
- Four types of cells
 - Keratinocytes deepest, produce keratin (tough fibrous protein)
 - Melanocytes make dark skin pigment melanin
 - Merkel cells associated with sensory nerve endings
 - Langerhans cells macrophage-like dendritic cells
- Layers (from deep to superficial)
 - Stratum basale or germinativum single row of cells attached to dermis; youngest cells
 - Stratum spinosum spinyness is artifactual; tonofilaments (bundles of protein) resist tension
 - Stratum granulosum layers of flattened keratinocytes producing keratin (hair and nails made of it also)
 - Stratum lucidum (only on palms and soles)
 - Stratum corneum horny layer (cells dead, many layers thick)

(see figure on next slide)

Epithelium: layers (on left) and cell types (on right)

Remember...

• Four basic types of tissue

- Epithelium epidermis just discussed
- Connective tissue <u>dermis</u>
- -Muscle tissue
- Nervous tissue

Keratinization

- The formation of a layer of dead, protective cells filled with keratin
- Occurs on all exposed skin surfaces except eyes

Skin Life Cycle

• It takes 15–30 days for a cell to move from stratum germinosum to stratum corneum

Dermis

- Strong, flexible connective tissue: your "hide"
- Cells: fibroblasts, macrophages, mast cells, WBCs
- Fiber types: collagen, elastic, reticular
- Rich supply of nerves and vessels
- Critical role in temperature regulation (the vessels)
- Two layers (see next slides)
 - Papillary areolar connective tissue; includes dermal papillae
 - Reticular "reticulum" (network) of collagen and reticular fibers

Copyright @ 2005 Pearson Education, Inc., publishing as Benjamin Cummings.

Water Loss Through Skin

- Dehydration results:
 - from damage to stratum corneum, *e.g.*, burns and blisters (insensible perspiration)
 - from immersion in hypertonic solution, *e.g.*, seawater (osmosis)

Water Gain Through Skin

- Hydration:
 - results from immersion in hypotonic solution, *e.g.*, freshwater (osmosis)
 - causes stretching and wrinkling skin

Epidermis and dermis of (a) thick skin and (b) thin skin (which one makes the difference?)

Fingerprints, palmprints, footprints

- Dermal papillae lie atop dermal ridges
- Elevate the overlying epidermis into epidermal ridges
- Are "sweat films" because of sweat pores
- Genetically determined

Flexion creases

• Deep dermis, from continual folding

Fibers

- Collagen: strength and resilience
- Elastic fibers: stretch-recoil
 - Striae: stretch marks
- Tension lines (or lines of cleavage)
 - The direction the bundles of fibers are directed

The dermis is the receptive site for the pigment of tattoos

Hypodermis

- "Hypodermis" (Gk) = below the skin
- "Subcutaneous" (Latin) = below the skin
- Also called "superficial fascia" "fascia" (Latin) =band; in anatomy: sheet of connective tissue
- Fatty tissue which stores fat and anchors skin (areolar tissue and adipose cells)
- Different patterns of accumulation (male/female)

Skin color

- Three skin pigments
 - Melanin: the most important
 - Carotene: from carrots and yellow vegies
 - Hemoglobin: the pink of light skin
- Melanin in granules passes from melanocytes (same number in all races) to keratinocytes in stratum basale
 - Digested by lysosomes
 - Variations in color
 - Protection from UV light vs vitamin D?

Carotene

- Orange-yellow pigment
- Found in orange vegetables

- Accumulates in epidermal cells and fatty tissues of the dermis
- Can be converted to vitamin A

Melanin

- Yellow-brown or black pigment
- Produced by melanocytes in stratum germinativum
- Stored in transport vesicles (melanosomes)
- Transferred to keratinocytes

Skin appendages

- Derived from epidermis but extend into dermis
- Include
 - Hair and hair follicles
 - Sebaceous (oil) glands
 - Sweat (sudoiferous) glands
 - Nails

Copyright @ 2005 Pearson Education, Inc., publishing as Benjamin Cummings.

Nails

- Of hard keratin
- Corresponds to hooves and claws
- Grows from nail matrix

Hair and hair follicles: complex

Derived from epidermis and dermis Everywhere but palms, soles, nipples, parts of genitalia

Copyright @ 2005 Pearson Education, Inc., publishing as Benjamin Cummings.

- Functions of hair
 - Warmth less in man than other mammals
 - Sense light touch of the skin
 - Protection scalp
- Parts
 - Root imbedded in skin
 - Shaft projecting above skin surface
- Make up of hair hard keratin
- Three concentric layers
 - Medulla (core)
 - Cortex (surrounds medulla)
 - Cuticle (single layers, overlapping)

- Types of hair
 - Vellus: fine, short hairs
 - Intermediate hairs
 - Terminal: longer, courser hair
- Hair growth: averages 2 mm/week
 - Active: growing
 - Resting phase then shed
- Hair loss
 - Thinning age related
 - Male pattern baldness
- Hair color
 - Amount of melanin for black or brown; distinct form of melanin for red
 - White: decreased melanin and air bubbles in the medulla
 - Genetically determined though influenced by hormones and environment

Sebaceous (oil) glands

- Entire body except palms and soles
- Produce *sebum* by holocrine secretion
- Oils and lubricates

(a) Sectioned sebaceous gland

Sweat glands

- Entire skin surface except nipples and part of external genitalia
- Prevent overheating
- 500 cc to 12 l/day! (is mostly water)
- Humans most efficient (only mammals have)
- Produced in response to stress as well as heat

(b) Sectioned eccrine gland

Types of sweat glands

- Eccrine or merocrine
 - Most numerous
 - True sweat: 99% water, some salts, traces of waste
 - Open through pores
- Apocrine
 - Axillary, anal and genital areas only
 - Ducts open into hair follices
 - The organic molecules in it decompose with time odor
- Modified apocrine glands
 - Ceruminous secrete earwax
 - Mammary secrete milk

Homeostasis

- Thermoregulation:
 - is the main function of sensible perspiration
 - works with cardiovascular system
 - regulates body temperature

Repair of Localized Injuries to the Skin: Step 1

- Bleeding occurs
- Mast cells trigger inflammatory response

Repair of Localized Injuries to the Skin: Step 2

 A scab stabilizes and protects the area

After several hours, a scab has formed and cells of the stratum germinativum are migrating along the edges of the wound. Phagocytic cells are removing debris, and more of these cells are arriving via the enhanced circulation in the area. Clotting around the edges of the affected area partially isolates the region.

The Inflammatory Response

- Germinative cells migrate around the wound
- Macrophages clean the area
- Fibroblasts and endothelial cells move in, producing granulation tissue

Repair of Localized Injuries to the Skin: Step 3

- Fibroblasts produce scar tissue
- Inflammation decreases, clot disintegrates

STEP

One week after the injury, the scab has been undermined by epidermal cells migrating over the meshwork produced by fibroblast activity. Phagocytic activity around the site has almost ended, and the fibrin clot is disintegrating.

Repair of Localized Injuries to the Skin: Step 4

- Fibroblasts strengthen scar tissue
- A raised keloid forms

After several weeks, the scab has been shed, and the epidermis is complete. A shallow depression marks the injury site, but fibroblasts in the dermis continue to create scar tissue that will gradually elevate the overlying epidermis.

Disorders of the integumentary system

- Burns
 - Threat to life
 - Catastrophic loss of body fluids
 - Dehydration and fatal circulatory shock
 - Infection
 - Types
 - First degree epidermis: redness (e.g. sunburn)
 - Second degree epidermis and upper dermis: blister
 - Third degree full thickness
- Infections
- Skin cancer

First-degree (epidermis only; redness)

Second-degree (epidermis and dermis, with blistering)

(b)

(c)

Third-degree

(full thickness, destroying epidermis, dermis, often part of hypodermis)

Critical burns

- Over 10% of the body has thirddegree burns
- 25 % of the body has second-degree burns
- Third-degree burns on face, hands, or feet

Tumors of the skin

- Benign, e.g. warts
- Cancer associated with UV exposure (also skin aging)
 - Aktinic keratosis premalignant
 - Basal cell cells of stratum basale
 - Squamous cell keratinocytes
 - Melanoma melanocytes: most dangerous; recognition:
 - A **A**symmetry
 - B Border irregularity
 - C **C**olors
 - D Diameter larger than 6 mm

Skin Cancer

Copyright © 2005 Pearson Education, Inc., publishing as Benjamin Cummings.

(b) Sqaumous cell carcinoma

(c) Melanoma

Nerve physiology

Lec.Dr.Ruwaidah F. Khaleel

Nerve physiology

- <u>The nervous system</u> is one of regulating system. Electrochemical impulses of the nervous system make it possible to maintain homeostasis.
- The functions of the nervous system:
- 1. To detect changes and feel sensations
- 2. To initiate appropriate responses to changes
- 3. To organize information for immediate use and store it for future use

Nerve tissue

 Nerve cells are called neurons, the cell body contains the nucleus, dendrites are processes (extensions) that transmit impulses toward the cell body. The one axon of neuron transmits impulses away from the cell body.

- The one axon of neuron transmits impulses away from the cell body, and axon that carries the electrical nerve impulses. In PNS, axons and dendrites are (wrapped) in specialized cells called schwann cells, enclosing them in several layers of schwann cell membrane. These layers are the myelin sheath;
- <u>myelin</u> is phospholipid that electrically insulates neurons from one another.

- The spaces between adjacent schwann cells nodes of Ranvier.
- These nodes are the parts of the neuron cell membrane that depolarize when an electrical impulse is transmitted.

 The nuclei and cytoplasm of the schwann cells are wrapped around the outside of the myelin sheath and are called the **neurolemma**, in the CNS; the myelin sheaths are formed by oligodendrocytes, one of the neuroglia

Types of neurons:

- Neurons may be classified into three groups:
- 1. <u>sensory neurons (or afferent neurons)</u> carry impulses from CNS. Receptors detect external or internal changes and send the information to the CNS in the form of impulses by way of the afferent neurons.
- 2. <u>Motor neurons (or efferent neurons)</u> carry impulses from the central nervous system to **effectors**.
- 3. Interneuron is found entirely within the CNS.

Nerves

• A nerve is a group of axons and/or dendrites of many neurons, with blood vessels and connective tissue. Sensory nerves, motor nerves, and mixed nerve the three types of nerves.

The main physiological activities of the nerve fiber are:

- 1. Generation of nerve impulse.
- 2. Conduction of nerve impulse.
- 3. Transmission of impulse at the synapse.

Generation of nerve impulse:

- Excitability
- Excitability is that property of the nerve fiber by virtue of which it responds by generating a nerve signal (electrical impulses or the so called action potentials) when it is stimulated by a suitable stimulus which may be mechanical, thermal, chemical or electrical.

Resting membrane potential:

 A steady potential difference of -70 m V (inside negative) is observed in the nerve fiber. This is the resting membrane potential (RMP) and indicate the resting state of cell, also called state of polarization.

Action potential

 The action potential may be defined as the brief sequence of changes which occur in the resting membrane potential when stimulated by threshold stimulus.

 When the stimulus is sub minimal or sub threshold, it does not produce action potential, but does produce some changes in the RMP.

 There is slight depolarization for about 7 mV which cannot be propagated, since propagation occurs only if the depolarization reaches a firing level of 15 mV (-55 mV).

 Once the firing level is reached, there occurs action potential there occurs abrupt depolarization with propagation (action potential).

 The adequate strength of stimulus necessary for producing the action potential in a nerve fiber is known as threshold or minimal stimulus.

Phases of action potential

- The action potential basically occurs in two phase:
- Depolarization and repolarization

Figure 45-5 Biological Science, 2/e © 2005 Pearson Prentice Hall, Inc.

- When the nerve is stimulated, the polarized state (-70 mV) is altered, i.e. RMP is abolished and the interior of the nerve becomes positive (+35 mV) as compared to the exterior. This is called depolarization phase.
- Within no time there occurs several to the nearly original potential and this second phase of action potential is called repolarization phase.

According to Hodgkin-Huxley theory, the sequence of events are:

- **1.** Polarization phase. Resting membrane potential (-70 **mV)** is due to distribution of more cations outside the cell membrane and more anions inside the cell membrane, with Na+ ions more abundant outside the cell, and K+ ions and negative ions more abundant inside.
- Na+ Cannot inters the cell due to the impermeability of the membrane.

• **2. Depolarization phase.** When threshold

stimulus is applied to the cell membrane, at the point of stimulation the permeability of the membrane for **Na+ ions increase.**

- There occurs a rapid influx of Na+ ions into the cell.
- This rapid entry of Na+ leads to depolarization.

3. Repolarization phase. Repolarization occurs due to **decrease in further Na+ influx and K+ efflux** through the **voltage-gated K+ channels** which open later than Na+ channel but remain activated for prolonged period.

- Decrease in Na+ influx and efflux of K+ causes net transfer of positive charge out of the cell that serves to complete the repolarization.
- Then the sodium and potassium pumps return Na+ ions outside and K+ ions inside, and the neuron is ready to respond.

- Diffuse mesh of nerve cells that take part in simple reflex pathways
- Nerve cells interact with sensory and contractile cells

Main characteristics of nerve excitability

1. All or none response. A single nerve fiber always obeys **all or none law**, that is:

- When a stimulus of subthreshold intensity is applied to the axon, then no action potential is produced (none response)
- A response in the form of spike of action potential is observed when the stimulus is of threshold intensity;
- There occurs no increase in the magnitude of action potential when the strength of stimulus is more than the threshold level (all response). This all or none relationship observed between the strength of stimulus and the response achieved is known as (all or none law).

2. Refractory period.

Refractory period refers to the period following action potential (produced by a threshold stimulus) during which a nerve fiber either does not respond or responds sub normally to a stimulus of threshold intensity or greater than threshold intensity.

- It is of two types:
- A. Absolute refractory period (ARP): it is a short period following action potential during which second stimulus, no matter how strong it may be, cannot evoke any response (another action potential). In other words during absolute refractory period the nerve fiber completely loses its excitability.
- **B.** Relative refractory period (RRP): it is a short period during which the nerve fiber shows response if the strength of stimulus is more than normal.

Conduction of nerve impulse

- Conductivity refers to propagation of nerve impulse (action potential) in the form of a wave of depolarization through the nerve fiber.
- Normally, in the body the action potential is transmitted through fiber in one direction

Propagation of action potential in an unmyelinated axon are summarized:

- In the resting phase (polarized state) the axonal membrane is outside positive and inside negative

2. When an unmyelinated axon is stimulated at one site by a threshold stimulus, there occurs action potential at that site outside membrane become negative and inside positive (reversal of polarity) but the neighbouring areas until now remain in polarized state.

3. As ECF and ICF are both conductive to electricity,

a current will flow from positive polarized area to negative activated area through ECF and in the reverse direction in ICF. Thus, a **local circuit current** flow between the resting polarized site to the depolarized site of the membrane (current sink).

4. This circular current flow depolarizes the neighboring area of the membrane up firing level and a new action potential is produced which in turn depolarizes the neighboring area ahead. Thus, due to successive depolarization of the neighboring area, the action potential is propagated along the entire length of the axon.

The portion which depolarizes first also repolarizes first. Thus repolarization also follows the same direction as depolarization.

Propagation of action potential in a myelinated axon

The myelinated nerve fibers have a wrapping of myelin sheath with gaps at regular intervals which are devoid of myelin sheath (nods of Ranvier). The axonal membrane in the naked area (nodes of Ranvier) bears densely packed ion channels. The myelin sheath acts as an insulator and does not allow the current flow. Therefore, in meylinated nerve fiber the local circuit of current flow only occurs from one node of Ranvier to the adjacent node.

 That is the impulse (action potential) jumps from one node of Ranvier to next. This is known as saltatory conduction. Since the impulse jumps from one node to other, the speed of conduction in myelinated fibers is much rapid (50-100 times faster) than the unmyelinated fiber.

Orthodromic versus antidromic conduction

 Normally, the action potential is propagated in one direction. That is, usually the nerve impulse from the receptors or synaptic junctions travels along the entire length of axon to their termination. This type of conduction is called orthodromic conduction.

The conduction of nerve impulse in the opposite direction, as seen in the sensory nerve supplying the blood vessels, is called antidromic conduction.

Factors affecting conduction velocity

 The velocity of conduction in nerve fiber varies from as little as 0.25 m/sec in very small unmyelinated fiber to as high as 100 m/sec in very large myelinated fiber.

In general the factors affecting conducting velocity are:

 Temperature: a decrease in temperature delays conduction i.e. slows down the conduction velocity

2. Axon diameter: affects the conduction velocity through the resistance offered by the axoplasm (R.) to the flow of axoplasmic current. If the diameter of the axon is greater, the axoplasmic resistance (K) is lesser and hence the velocity of conduction is higher.

3. Myelination: increases conduction velocity by increases the axon diameter, and by the salutatory conduction produced due to its insulating effect.

 Neurons that transmitted impulses to other neurons do not actually touch one another. The small gap or space between the axon of one neuron and the dendrites or cell body of the next neuron is called the synapse.

 Within the synaptic knob (terminal end) of the presynaptic axon is a chemical neurotransmitter that is released into the synapse by the arrival of an electrical nerve impulse.

 The neurotransmitter diffuse across the synapse, combines with specific receptor sites on the cell membrane of the postsynaptic neuron, and there generates an electrical impulse that is, in turn, carried by this neurons axon to the next synapse, and so forth.

 A chemical in activator at the cell body or dendrite of the post synaptic neuron quickly inactivates in neurotransmitter. This prevents unwanted, continuous impulses, unless a new impulse from the first neuron releases more neurotransmitter.

Many synapses are termed excitatory

because the neurotransmitter causes the postsynaptic neurons to depolarize (become more negative outside as Na+ ions inter the cell) and transmit an electrical impulse to another neuron, muscle cell, or gland.

Some synapses, however, are inhibitory, meaning that the neurotransmitter causes the postsynaptic neuron to hyperpolarize (become even more positive outside as K+ ions have the cell or Cl⁻ ions inter the cell) and therefore not transmit an electrical impulse.

ion channels, resulting in graded potentials.

5) Reuptake by the presynapic neuron, enzymatic degradation, and diffusion reduce neurotransmitter levels, terminating the signal. Such inhibitory synapses are important, for example, for slowing the <u>heart rate</u>, and for balancing the excitatory impulses transmitted to skeletal muscles. With respect to the skeletal muscles, this inhibition prevents excessive contraction and is important for coordination.

 An example of neurotransmitter is acytylcholine, which is found at neuromuscular junctions, in the CNS, and in much of the peripheral nervous system. Acytylcholine usually makes a postsynaptic membrane more permeable to Na+ ions, which brings about depolarization of the postsynaptic neuron. **Cholinesterase** is the inactivator of acetylecholine.

@2000 How Stuff Works

There are many other neurotransmitters, especially in the central nervous system. These include

- Dopamine
- gamma amino butyric acid (GABA)
- norepinephrine
- glutamate
- serotonin.
- Norepinephrine is inactivated by either catechol-omethyltransferase (COMT) or monamine (MAO).

Nervous system divisions

- The nervous system has two divisions
- The central nervous system (CNS): consists of brain and spinal cord
- 2. The peripheral nervous system (PNS): consists of cranial nerves and spinal nerves. The PNS includes the autonomic nervous system (ANS).

Copyright @ 2007 Pearson Education, Inc., publishing as Benjamin Cummings

Spinal cord reflexes:

 A reflex is an involuntary response to a stimulus, that is, an automatic action stimulated by a specific change of some kind. Spinal cord reflexes are those that do not depend directly on the brain, although the brain may inhibit or enhance them.

Reflex Arc

- <u>A reflex arc</u> is the pathway that nerve impulses travel when a reflex is elicited, and there are five essential parts:
- <u>Receptors-</u> detect a change (the stimulus) and generate impulses.
- 2. <u>Sensory neurons-</u> transmit impulses from receptors to the CNS
- 3. <u>Central nervous</u> <u>system-</u> contains one or more synapses (interneurons may be part of the pathway).
- Motor neuronstransmit impulses from the CNS to the effector.
- 5. <u>Effector-</u> preforms its characteristic action.

A reflex arc showing the path of a spinal reflex white a dorsal a dorsal-root a cell body

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

A reflex arc showing the path of a spinal reflex

Patellar reflex or knee-jerk

 In this reflex, a tap on the patellar tendon just below the kneecap causes extension of the lower leg. This is a stretch reflex, which means that a muscle that is stretched will automatically contract.

 In the quadriceps femoris muscle are stretch that detect stretching produced by striking the patellar tendon. These receptors generate impulses that are carried along sensory neurons in the femoral nerve to the spinal cord, in the spinal cord, the sensory neurons synapse with motor neurons (this is a two-neuron reflex).

 The motor neurons in the femoral nerve carry impulses back to the quadriceps femoris, the effector, which contracts and extends the lower leg. The patellar reflex is one of many used clinically to determine whether the nervous system is functionally properly.

If the patellar reflex were absent in a patient, the problem could be in the tight muscle, the femoral nerve, or the spinal cord. If the reflex is normal, however, that means that all part of the reflex arc are intact. Since Response these are spinal cord reflexes, the brain is not directly involved.

Flexor reflexes (or withdrawal reflexes)

• In this reflex, the stimulus is something painful and potentially harmful and the response is to pull away from it. If you inadvertently touch a hot stove, you automatically pull your hand away.

 Flexor reflexes are three neuron reflexes, because sensory neurons synapse with interneurons in the spinal cord, which in turn synapse with motor neurons.

 Again, however, the brain does not have to make a decision to protect the body; the flexor reflex does that automatically.

The autonomic nervous system

- The autonomic nervous system (ANS) is actually part of the peripheral nervous system in that it consists of motor portions of some cranial and spinal nerves.
- The ANS has two divisions: sympathetic and parasympathetic. Often, they function in opposition to each other.

Autonomic pathways

- Autonomic nerve pathway consist of two motor neurons that
- **1.** The first neuron is called the preganglionic neuron, from the CNS to the ganglion.
- 2. The second neuron is called the ganglionic neuron, from the ganglion to the visceral effectors.

Sympathetic division:

- The sympathetic division brings about widespread responses in many organs.
- The sympathetic division is dominant in stressful situations, which include
- ✓ anger, fear, or anxiety, as well as exercise.

For our prehistoric ancestors, stressful situations often involved the need for intense physical activity- the (fight or flight response).

- 1. The heart rate increases,
- 2. vasodilation in skeletal muscles supplies them with more oxygen,
- 3. the bronchioles dilate to take in more air
- 4. the liver changes glycogen to glucose to supply energy.
- 5. At the same time digestive secretions decrease and peristalsis slows; these are not important in a stress situation.
- 6. Vasoconstriction in the skin
- 7. viscera shunts blood to more vital organs such as the heart, muscles, and brain.

Parasympathetic division

• The parasympathetic division dominates in relaxed (nonstress) situation to promote normal functioning of several organ systems.

Urinary system

Urinary system

- Urinary System is a group of organs in the body concerned with filtering out excess fluid and other substances from the bloodstream.
- The substances are filtered out from the body in the form of urine.

- <u>Urine</u> is a transparent yellow fluid containing unwanted wastes mostly excess water, salts, and nitrogen compounds (In general 95% water and 5% solutes).
- <u>Excretion</u> is the process of eliminating, from an organism, waste products of metabolism and other materials that are of no use.

- The kidneys are the most important excretory organ; they also accomplish several other functions:
- 1. Regulation of plasma ionic composition such as **sodium**, **potassium**, **calcium**, **magnesium**, **chloride**, **bicarbonate**, **and phosphates**
- 2. Regulation of plasma osmolality
- 3. Regulation of plasma volume by controlling how much water a person excretes. ..
- 4. Regulation of plasma hydrogen ion concentration (pH) with the lungs (regulated the acid- base balance)
- 5. Removal of metabolic waste products and foreign substances from the plasma like nitrogenous waste (urea, ammonia, creatinine and uric acid)

- <u>Urea</u> comes from combines that ammonia with carbon dioxide by the liver.
- <u>Creatinine</u> comes from the metabolic breakdown of creatine phosphate (a high-energy phosphate in muscles).
- <u>Uric acid</u> comes from the breakdown of nucleotides. Uric acid is <u>insoluble</u> and too much uric acid in the blood will build up and form crystals that can collect in the joints and cause gout.

- Secretion of hormones like Renin, it is needed to stimulate the secretion of aldosterone by the adrenal cortex which promotes the kidneys to reabsorb the (Na+) ions.
- 7. The kidneys also secrete erythropoietin when the blood doesn't have the capacity to carry oxygen; erythropoietin stimulates red blood cell production. Vitamin **D** from the skin is also activated with help from the kidneys. Calcium (Ca+) absorption from the digestive tract is promoted by vitamin **D**.

Copyright @ 2004 Pearson Education, Inc., publishing as Benjamin Cummings.
- All vertebrates dispose of excess water and other wastes by means of kidneys.
- The kidneys of fish and amphibians are comparatively simple, while those of 'mammals are the most complex. Fish and amphibians absorb a great deal of water and, as a result, must excrete large quantities of urine in contrast, the urinary systems of birds and reptiles are designed to conserve water; these animals produce urine that is solid or semisolid.

Kidneys and Their Structure:-

 The kidneys are pair of bean shaped, reddish brown organs, weights 140-160 g, they are covered by the renal capsule, which is a tough capsule of fibrous connective tissue.

 Adhering to the surface of each kidney is two layers of fat to help cushion them. There is a concaved side of the kidney that has a depression where a renal artery enters, and a renal vein and a ureter exit the kidney. They are considered retroperitoneal, which means they lie behind the peritoneum.

 Each kidney has an indentation called the hilum on its medial side, at the hilum, the renal artery enters the kidney, and the renal vein and ureter emerge, the renal artery delivers over 1700 liters of blood to the kidneys each day, which these organs filter and return to the heart via the renal vein.

- There are three major regions of the kidney, **renal cortex, renal medulla** and the **renal pelvis.**
- <u>The outer</u>, granulated layer is the renal cortex; the cortex stretches down in between a radially striated inner layer.
- <u>The inner</u> radially striated layer is the renal medulla, this contains between 8 and 18 cone- shaped sections known as pyramids called the renal pyramids, separated by renal columns. The ureters are continuous with the renal pelvis and are the very center of the kidney.

The Nephron:-

• The **nephron** is the structural and functional unit of the kidney; each kidney contains approximately 1 million nephrons. It is in the nephrons, with their associated blood vessels, that urine is formed.

Each nephron has two major portions:

- Renal corpuscle
- Renal tubule
- Each of these major
 parts has further
 subdivisions.

Renal Corpuscle:

- A renal corpuscle consists of a glomerulus surrounded by a Bowman's capsule.
- The glomerulus is a capillary network that arises from an afferent arteriole and empties into an efferent arteriole.

 The diameter of the efferent arteriole is smaller than that of the afferent arteriole, which helps maintain a fairly high blood pressure in the glomerulus.

- **Bowman's capsule** (or glomerular capsule) is the expanded end of a renal tubule; it encloses the glomerulus.
- The inner layer of Bowman's capsule is made of **podocytes**; the name means "foot cells," and the "feet" of the podocytes are on the surface of the glomerular capillaries.

Renal Corpuscle and the Filtration Membrane

- The arrangement of podocytes creates pores, spaces between adjacent "feet," which make this layer very permeable.
- The space between the inner and outer layers of Bowman's capsule contains renal filtrate, the fluid that is formed from the blood in the glomerulus and will eventually become urine.

Renal Tubule:

- The renal tubule continues from Bowman's capsule and consists of the following parts:
- 1. Proximal convoluted tubule (in the renal cortex and contains the microvilli),
- Loop of Henle (or loop of the nephron, in the renal medulla),
- **3. Distal convoluted tubule** (in the renal cortex).
- The distal convoluted tubules from several' nephrons empty into a **collecting tubule.**
- All parts of the renal tubule are surrounded by peritubular capillaries
- The peritubular capillaries will receive the materials reabsorbed by the renal tubules.

Blood Vessels of the Kidney:-

• The pathway of blood flow through the kidney

- The efferent arteriole drains the glomerulus. Between the two arterioles lies specialized cells called the macula densa.
- The juxtaglomerular cells and the macula densa collectively form the juxtaglomerular apparatus. It is in the juxtaglomerular apparatus cells that the enzyme renin is formed and stored.

Ureters:

• <u>The ureters</u> are two tubes that drain urine from the kidneys to the bladder; each ureter is a muscular tube about (25 cm) long.

Muscles in the walls of the ureters Ureter-Send the urine in small spurts into the bladder. After the urine enters the bladder from the ureters, Bladder Small folds in the bladder mucosa act like valves preventing backward flow of the urine. The outlet of the bladder is controlled by a sphincter muscle. A full bladder stimulates sensory nerves in the bladder wall **Relax the sphincter and allow release of the urine. Relaxation of the sphincter is also in part a learned response under voluntary control.**

The released urine enters the urethra.

Urinary Bladder:

- <u>The urinary bladder</u> is a hollow, muscular and distensible or elastic organ that sits on the pelvic floor (superior to the prostate in males)
- On its anterior border lies the pubic symphysis and, on its posterior border, the vagina (in females) and rectum (in males).

URINARY BLADDER

 The urinary bladder can hold approximately (500 to 530 ml) of urine; when the bladder fills with urine (about half full), stretch receptors send nerve impulses to the spinal cord, which then sends a reflex nerve impulse back to the sphincter (muscular valve) at the neck of the bladder, causing it to relax and allow the flow of urine into the urethra..

(b)

- The Internal urethral sphincter is involuntary. The ureters enter the bladder diagonally horn its dorsolateral floor in an area called the trigone.
- The trigone is a triangular shaped area on the postero- inferior wall of the bladder. The urethra exits at the lowest point of the triangle of the trigone

Urethra:

- <u>The urethra</u> is a muscular tube that connects the bladder with the outside of the body.
- The function of the urethra is to remove urine from the body, it measures about (3.8 cm) in the human female and opens in the vulva between the clitoris and the vaginal opening.
- In the human male, the urethra is about (20 cm) long and opens at the end of the penis.
- Because the Urethra is so much shorter in a woman it. makes it much easier for a woman to get harmful bacteria in her bladder this is commonly called a bladder infection or a UTI.

Distal and Proximal Urethra

The urethral sphincter

- is a collective name for the muscles used to control the flow of urine from the urinary bladder; these muscles surround the urethra, so that when they contract, the urethra is closed.
- There are two distinct areas of muscle:
- 1. The internal sphincter, at the bladder neck
- 2. The external, or distal, sphincter
- Human males have much stronger sphincter, muscles than females, meaning that they can retain a large amount of urine

Formation of Urine:-

- The formation of urine involves three major processes:
- The first is glomerular filtration, which takes place in the renal corpuscles.
- 2. The second and third are tubular reabsorption and tubular secretion, which take place in the renal tubules.

- Filtration is the process in which blood pressure forces plasma and dissolved material out of capillaries.
- In **glomerular filtration**, blood pressure forces plasma, dissolved substances, and small proteins out of the glomeruli and into Bowman's capsules, this fluid is no longer plasma but is called **renal filtrate**.
- The blood cells and larger proteins are too large to be forced out of the glomeruli, so they remain in the blood.

- The glomerular filtration rate (GFR) is the amount of renal filtrate formed by the kidneys in 1 minute, and averages 100 to 125 ml per minute (remove about 19% of blood plasma).
- GFR may be altered if the rate of blood flows through the kidney changes.
- If blood flow increases, the GFR increases, and more filtrate is formed.
- If blood flow decreases (as may happen following a severe hemorrhage), the GFR decreases, less filtrate is formed, and urinary output decreases.

Tubular Reabsorption:

- Tubular reabsorption takes place from the renal tubules into the peritubular capillaries (the blood pressure in the peritubular capillaries is 15 mmHg).
- In a 24- hour period, the kidneys form 150 to 180 liters of filtrate, and normal urinary output in that time is 1 to 2 liters. Therefore, it becomes apparent that most of the renal filtrate does not become urine.
- Approximately 99% of the filtrate is reabsorbed back into the blood in the peritubular capillaries. Only about 1% of the filtrate will enter the renal pelvis as urine.

 Glomerular filtrate has now been separated into two forms: reabsorbed filtrate and nonreabsorbed filtrate.

1. Non-reabsorbed filtrate is now known as tubular fluid as it passes through the collecting duct to be processed into urine.

 Most reabsorption and secretion (about 65%) take place in the proximal convoluted tubules whose cells have microvilli that greatly increase their surface area. Water, Na⁺, Cl⁻, K⁺, glucose, amino acid are reabsorbed in proximal convoluted tubules whale other does not reabsorb like inulin, creatinine.

- About 20% of filtered Na⁺ and Cl⁻, 15% of filtered water and cations such as K⁺, Ca²⁺ and Mg²¹ are reabsorbed in the loop of Henle.
- 2. In thin descending limb of loop of Henle water absorption occurs passively (because of hypertonic interstitial fluid) in this part of loop of Henle. It is accompanied by diffusion of sodium ions from interstitial fluid into tubular lumen.

- 4. The thick ascending limb of loop of Henle is impermeable to water but is involved, in the reabsorption of 20 % of the filtered Na⁺, and Cl⁻ and other cations.
- 5. The distal convoluted tubules and collecting tubules are also important sites for the reabsorption, approximately 7% of the filtered NaCl and about 8-17% of water is reabsorbed.

- Early distal tubule (initial segment of distal tubule) reabsorbs Na⁺, Cl⁻ and Ca²⁺, and is impermeable to water.
- Late distal tubule and collecting duct have two cell types (principal cells and intercalated cells) which perform both reabsorption and secretory functions.
- Sodium chloride reabsorbed into the system
 - Increases the osmolality of blood in comparison to the glomerular filtrate.
 - Allows water (H20) to pass from the glomerular filtrate back into the circulatory system.

A longitudinal section of the right kidney.

• If all of the carrier molecules are used up, excess glucose or amino acids are set free into the urine.

Reabsorption of Water and Salt:

- Direct control of water excretion in the kidneys is exercised by the anti-diuretic hormone (ADH).
 - Posterior lobe of the pituitary gland
 - Anti-diuretic hormone (ADH)
 - Causes the insertion of water channels into the membranes of cells lining

the collecting ducts,

• Allowing water reabsorption to occur.

 \mathbf{V}

• Without ADH, little water is reabsorbed in the collecting ducts and dilute urine is excreted.

There are several factors that influence the secretion of ADH.

- The first of these happen
- When the blood plasma gets too concentrated
 - Special receptors in the hypothalamus release ADH
 - When blood pressure falls
- Stretch receptors in the aor and carotid arteries
 - Stimulate ADH secretion tc increase volume of the bloo

How helps maintain normal blood volume and blood pressure?

- Aldosterone is secreted by the adrenal cortex in response to a high blood potassium level, to a low blood sodium level, or to a decrease in blood pressure.
- Aldosterone promotes the excretion of potassium ions and the reabsorption of sodium ions, when aldosterone stimulates the reabsorption of Na⁺ ions, water follows from the filtrate back to the blood.

 The release of Aldosterone is initiated by the secretion of renin the enzyme that converts angiotensinogen (a large plasma protein produced by the liver) into Angiotensin I and eventually into **Angiotensin II** which stimulates the adrenal cortex to produce aldosterone.

- The antagonist to aldosterone is atrial natriuretic peptide (ANP), which is secreted by the atria of the heart when the atrial walls are stretched by high blood pressure or greater blood volume. ANP inhibits the secretion of renin by the juxtaglomerular apparatus and the secretion of the aldosterone by the adrenal cortex.
- This promotes the excretion of sodium. When sodium is excreted so is water. This causes blood pressure and volume to decrease.

Tubular Secretion:

- Some substances are removed from blood through the peritubular capillary network into the distal convoluted tubule or collecting duct and K⁺ and H⁺ are secreted in these segments. This mechanism also changes the composition of urine.
- In tubular secretion, substances are actively secreted from the blood in the peritubular capillaries into the filtrate in the renal tubules. Waste products, such as ammonia and some creatinine, and the metabolic products of medications may be secreted into the filtrate to be eliminated in urine.

- Hydrogen ions (H⁺) may be secreted by the tubule cells to help maintain the normal pH of blood.
 Hypernatremia:
- Hypernatremia is an increase in plasma sodium levels above normal.

What is importance of sodium?

- 1. Sodium is the primary solute in the extracellular fluid.
- 2. Sodium levels have a major role in osmolality regulation.
- 3. For excitable cells the electrochemical gradient for sodium across the plasma membrane is critical for life.
- 4. Water retention and an increased blood pressure usually are signs of hypernatremia.
- If plasma sodium levels are below normal it is called <u>hyponatremia</u>: Signs of this are low plasma the volume and hypotension

Diuretics:

- 1. A diuretic is any drug that elevates the rate of bodily urine excretion (diuresis),
- 2. Diuretics also decrease the extracellular fluid (ECF) volume, and are primarily used to produce a negative extracellular fluid balance.
- 3. Caffeine, cranberry juice and alcohol are all weak diuretics.
- 4. In medicine, diuretics are used to treat heart failure, liver cirrhosis, hypertension and certain kidney diseases.
- 5. Diuretics alleviate the symptoms of these diseases by causing Na+ and water loss through the urine.

- Chemically, diuretics are a diverse group of compounds that either stimulate or inhibit various hormones that naturally occur in the body to regulate urine production by the kidneys.
- Alcohol produces diuresis through modulation of the vasopressin system.

Diseases of the Kidney:-

- 1. Diabetic nephropathy; Is a progressive kidney disease caused by angiopathy of capillaries in the kidney glomeruli. It is characterized by nodular glomerulosclerosis. It is due to longstanding diabetes mellitus.
- In medicine hematuria (or "haematuria") is the presence of blood in the urine. It is a sign of a large number of diseases of the kidneys and the urinary tract, ranging from trivial to lethal.

Microscopic hematuria means blood can be seen only with a microscope.

2. Kidney stones:

- Also known as nephrolithiases, urolithiases or renal calculi, are solid accretions (crystals) of dissolved minerals in urine found inside the kidneys or ureters.
- They vary in size from as small as a grain of sand to as large as a golf bal Kidney stones typically leave the body in the urine stream;
- If they grow relatively large before passing (on the order of millimeters) obstruction of a ureter and distentic with urine can cause severe pain most commonly felt in the flank, lower abdomen and groin.
- Kidney stones are unrelated to gallstones.

GADAM, Inc.

3. Pyelonephritis:

- When an infection of the renal pelvis and calices, called **pyelitis**, spreads to involve the rest of the kidney as well, the result is pyelonephritis.
- It usually results from the spread of fecal bacterium Escherichia coli from the anal region superiorly through the urinary tract. In severe cases, the kidney swells and scars, abscesses form, and the renal pelvis fill with pus.
- Left untreated, the infected kidney may be severely damaged, but administration of antibiotics usually achieves a total cure.

4. Urinary tract infections (UTI's):

- The second most common type of bacterial infections is UTI's. In the hospital indwelling catheters and straight Catheterizing predispose the opportunity for urinary tract infections.
- In females there are three stages in life that predispose urinary tract infections that is menarche, manipulation between intercourse, and menopause.

5. Glomerulonephritis:

- Inflammation of the glomerular can be caused by immunologic abnormalities, drugs or toxins, vascular disorders, and systemic diseases.
 Glomerulonephritis can be acute, chronic or progressive.
- Two major changes in the urine are distinctive of glomerulonephritis:
- hematuria and proteinuria with albumin as the major protein. There is also a decrease in urine as there is a decrease in GFR (glomerular filtration rate).

Ureter, low power. Extensive edemia resulting in marked narrowing of lument cellular infibration in submicrosa and in musculature. (H and E stain)

Kidney, low power, Prominence of energinal based due to clustere incl of cells, neurotic tubules in upper right conter 04 and Estami

Kidney, medium power. Uniforminiterstitul externa and cellular influtation, chiefly of lymphocytos tudades relatively normal except recreate tubales at upper left (H and E starr).

Uneter, high pinner. Cluster of eosimophils in submucosa adjacent to band of smooth muscle (H and E stain)

© ELSEVIER, INC. - NETTERIMAGES.COM

6. Renal Failure:

- Uremia is a syndrome of renal failure and includes elevated blood urea and creatinine levels.
 Acute renal failure can be reversed if diagnosed early.
- Acute renal failure can be caused by severe hypotension or severe glomerular disease.

Diabetes Insipidus (DI):

- This is caused by the deficiency of or decrease of ADH. The person with (DI) has the inability to concentrate their urine in water restriction, in turn they will void up' 3 to 20 liters/day.
- There are two forms of (DI):
- 1. Neurogenic: it is usually caused by head injury near the hypophysisal tract.
- 2. Nephrogenic, In nephrogenic (DI) th kidneys do not respond to ADH.
- Usually the nephrogenic (DI) is characterized by: The impairment of the urine concentrating capability of the kidney along with concentration of water. The cause may be a genetic trait, electrolyte disorder, or side effect of drugs.

Dialysis and Kidney Transplant:-

- Generally, humans can live normally with just one kidney. Dialysis is a medical procedure, performed in various different forms, where the blood is filtered outside of the body. There are two types of kidney transplants:
- Living donor transplant
- Cadaveric (dead donor) transplant.

- When a kidney from a living donor, usually a blood relative, is transplanted into the patient's body, the donor's blood group and tissue type must be judged compatible with the patient's.
- In both cases, the recipient of the new organ needs to take drugs to suppress their immune system to help prevent their body from rejecting the new kidney.

The Urination Reflex:

- Urination may also be called micturition or voiding. This reflex is a spinal cord reflex over which voluntary contro may be exerted.
- The stimulus for the ref is stretching of the detr muscle of the bladder.

26.21

- The bladder can hold as much as 800 mL of urine, or even more, but the reflex is activated long before the maximum is reached. When urine volume reaches 200 to 400 ml, the stretching is sufficient to generate sensory impulses that travel to the sacral spinal cord.
- Motor impulses return along parasympathetic nerves to the detrusor muscle, causing contraction.

Anterior view of frontal section

 At the same time, the internal urethral sphincter relaxes. If the external urethral sphincter is voluntarily relaxed, urine flows into the urethra, mad the bladder is emptied. Urination can be prevented by voluntary contraction of the external urethral sphincter. However, if the bladder continues to fill and be stretched, voluntary control is eventually no longer possible.

Anterior view of frontal section

The Kidneys and Acid- Base Balance:-

- The kidneys are the organs most responsible for maintaining the pH of blood (normal 7.35 - 7.45) and tissue fluid within normal ranges.
- They have the greatest ability 1 compensate for the pH change that are a normal part of body metabolism or the result of disease, and to make the necessary corrections.
- Acid- base balance is controlle by renal regulation of HC03⁻ and H⁺ ions and by pulmonary excretion of C02.

ACID-BASE BALANCING BY THE KIDNEY

- The response of the kidney to acid-base imbalances is governed by the relative magnitudes of proton secretion and HCO₃ filtration because these two factors affect the rates of acid and alkali excretion.
- If P_{CO2} rises, proton secretion becomes dominant and the kidney excretes acid, raising blood pH.
- If [HCO₃]_p rises, HCO₃ filtration increases and the kidney excretes alkali, reducing blood pH.

If body fluids are becoming too acidic, the kidneys will secrete more H⁺ ions into the renal filtrate and will return more HC03⁻ ions to the blood. This wills help raise the pH of the blood back to normal.

If body fluids are becoming too alkaline, the kidneys will return H⁺ ions to the blood and excrete HC03⁻ ions in urine. This will help lower the pH of the blood back to normal.

 The response of the kidney to acid-base imbalances is governed by the relative magnitudes of proton secretion and HCO₃ filtration because these two factors affect the rates of acid and alkali excretion.

If P_{CO2} rises, proton secretion becomes dominant and the kidney excretes acid, raising blood pH.

• If [HCO₃]_p rises, HCO₃ filtration increases and the kidney excretes alkali, reducing blood pH.

Digestive system

Digestive system

- The digestive system: It is referred to as the gastrointestinal (GI), can be divided into the
- **1.** Tubular gastrointestinal (GI) tract
- 2. Accessory digestive organs
- The GI tract is approximately 9 m long and extends from the mouth to the anus.
- The organs of the GI tract include the mouth, pharynx, esophagus, stomach, small intestine, and large intestine.
- The accessory digestive organs are not part of the tract but secrete substances into it via connecting ducts, they include the salivary glands, liver, gallbladder, and pancreas.

Functions of the GI system

- The functions of the GI system can be described in terms of the following four processes:
- 1. **Digestion**: this refers to the breakdown of food molecules into their smaller subunits, which can be absorbed. During digestion, two main processes occur at the same time.
- A. Mechanical digestion: larger pieces of food get broken down into smaller piece while being prepared for chemical digestion. Mechanical digestion starts in the mouth and continues into the stomach.
- **B.** Chemical digestion: several different enzymes breakdown macromolecules into smaller molecule that can be absorbed. Chemical digestion starts in the mouth and continues into the intestines.

2. Secretion: this include both exocrine and endocrine secretion

- A. Exocrine secretions: water, hydrochloric acid, bicarbonate, and many digestive enzymes are secreted into the lumen of the GI tract
- B. Endocrine secretions: the stomach and small intestine secrete a number of hormones that help to regulate the digestive system
- **3. Absorption:** this refers to the passage of digested and products from the lumen of the GI tract across a layer of epithelial cells into the blood or lymph

sa401031 www.fotosearch.com

4. Motility: this refers to the movement of blood through the digestive tract through the processes of :

- A. Ingestion: taking food into the mouth
- B. Mastication: chewing the food and mixing it with saliva.
- **C. Deglutition:** swallowing food
- **D.** Peristalsis: Rhythmic, wavelike contractions that move food through the GI tract.

<u>To achieve</u> these different functions the following mechanisms are involved:

- Section of digestive juices
 Such as saliva, gastric HCl, enzymes and bile.
- 2. GI tract motility for mixing with digestive juices and passage the GI tract
- 3. Secretion of GI tract hormones.

Layers of the GI tract

- The GI tract composed of <u>four layers</u>, each layer has different tissues and functions. From the inside out they are:
- 1. Mucosa: is the inner layer of the GI tract that surrounding the lumen. It is composed of simple epithelium cells and a thin connective tissue. This layer comes in direct contact with the food and is responsible for absorption and secretion

- 2. Submucosa: consists of a dense irregular layer of connective tissue with large blood vessel, lymphatic and nerve branching into mucosa and muscularis.
- 3. Muscularis: is composed of two layers of muscle an inner circular and outer longitudinal layer of smooth muscle. The circular muscle layer prevents the food from going backwards and the longitudinal layer shorten the tract (peristalsis).
- <u>The muscularis</u> is responsible for segmental contractions and peristaltic movement in GI tract.

4. Serosa or adventitia: consists of several layers of connective tissue and simple squamous epithelium. This last layer is a protective layer, it secrets lubricating serous

Phases of digestion:

- Oral cavity and esophagus:
- The GI tract begins with the mouth, and digestion starts there with chewing, which breaks up large pieces of food into smaller particles that can be swallowed.
- Saliva was secreted by three pairs of salivary glands, they are:
- **1. parotid glands** الغدد النكفية
- الغدد تحت الفك السفلي submandibular glands
- الغدد تحت اللسان. .sublingual glands
- Saliva, which contains mucus, moistens and lubricates the food particles before swallowing.
- It also contains the enzyme amylase, which partially digests polysaccharides

 The next segments of the GI tract, the pharynx and esophagus, contribute nothing to digestion but provide the pathway by which ingested materials reach the stomach. The muscles in the walls of these segments control swallowing.

Stomach

- <u>The stomach</u> is a saclike organ, located between the esophagus and the small intestine, it is the most <u>distensible part</u> of the GI tract.
- The stomach is divided into four sections:
- Cardiac region is where the contents of the esophagus empty into the stomach
- انحناء العلوي 2. <u>Fundus</u> is formed by the <u>upper curvature</u> of the organ
- 3. Body is the main central region
- 4. <u>Pylorus</u> is the lower section of the organ that facilitates emptying the contents into the small intestine

There are two sphincters keep the contents of the stomach:

- 1. Cardiac or esophageal sphincter dividing the tract above
- 2. Pyloric sphincter dividing the stomach from the small intestine.

The functions of the stomach are :

- 1. To store food
- 2. To initiate the digestion of proteins,
- 3. To kill bacteria with the strong acidity of gastric juice
- 4. To move the food into the small intestine as a pasty material called **chyme**, which contains molecular fragment of proteins and polysaccharides, droplets of fat, and salt, water, and various other small molecules ingested in the food.

The glands lining the stomach wall are called gastric glands, these glands contain several types of cells that secrete different products:

- 1. Goblet cells secrete mucus
- 2. Parietal cells secrete hydrochloric acid (HCl)
- 3. Chief cells secrete pepsinogen, an inactive form of the protein-digesting enzyme pepsin.

Small intestine

اللفائفي

- The small intestine is d into three segments:
- 1. short segment (the duodenum) المعي الأثنا عشري Small
- الصائم 2. jejunum
- 3. longest segment (the i
- Normally, most of the c • entering from the stom digested and absorbed in the first quarter of the small intestine, in the duodenum and jejunum

C Healthwise, Incorporated

- Digestions final stage and most absorption occur in the small intestine.
- Here molecules of intact or partially digested carbohydrates, fats, and proteins are broken down by hydrolytic enzymes are on the luminal surface of the intestinal lining cells, while others are secreted by the pancreas and enter the intestinal lumen

Digestive enzymes

Reaction	Enzymes	Produced by	Site of Occurrence
Starch + H ₂ 0 → maltose	a. Salivary amylase b. Pancreatic amylase	a. Salivary gland b. Pancreas	a. Mouth b. Small intestine
Maltose + H ₂ 0 → glucose	Maltase	Intestinal cells	Small intestine
Protein + H ₂ 0 \rightarrow peptides	a. Pepsin b. Trypsin	a. Gastric glands b. Pancreas	a. Stomach b. Small intestine
Peptides+ H ₂ 0 \rightarrow amino acids	Peptidase	Intestinal cells	Small intestine
Fats+ H ₂ 0 \rightarrow glycerol + fatty acids	Lipase	Pancreas	Small intestine

1. A. M. M. M. M.

- The mucosa of the small intestine contain many folds that are covered with tiny fingerlike projections called villi.
- In turn, the villi are covered with microscopic projections called **microvilli**.
- These structures create a vast surface area through which nutrients can be absorbed. The products of digestion are absorbed across the epithelial cells and enter the blood and/or lymph.

- Each villus has a network of capillaries and fine lymphatic vessels called **lacteals** close its surface.
- The epithelial cells of the villi transport nutrients from the lumen of the intestine into these capillaries (amino acids and carbohydrates) and lacteals (lipids).
- The food that remains undigested and unabsorbed passes into the large intestine.

Anatomy of Small Intestine
Large intestine

- The large intestine is divided into the:
- الاعور Cecum الاعور
- القولون Colon القولون
- 3. Rectum المستقيم
- 4. Anal canal الشرج
- Chyme from the ileum passes into the cecum, which is a blind pouch containing appendix (open only at one end) at the beginning of the large intestine.

- The large intestine has little or no digestive function, but it does absorb water and electrolyte from the remaining chyme.
- Bacteria residing in the intestine, primarily the coloncollectively referred to as the <u>intestinal microflora</u>, they ferment undigested nutrient, make gas and produce significant amount of vitamin K and folic acid, which are absorbed in the large intestine.

Waste material then passes in sequence through the:

- القولون الصاعد 1. Ascending colon
- القولون المستعرض **2. Transverse colon**
- القولون النازل 3. Descending colon القولون المقطع
- القولون المقطع 4. Sigmoid colon
- المستقيم **Rectum**
- قناة المخرج Anal canal

7. Waste material (feces) is excerted through the anus, the external opining of the anal canal.

Pancreas, liver, and gallbladder

- The pancreas, liver, and gallbladder are essential for digestion.
- <u>Pancreas</u> that help digest proteins, fat and carbohydrates.
- 2. <u>Liver produces bile that</u> helps the body absorb fat.
- **3.** <u>Gallbladder</u> stores the bile until it is needed.
- The enzymes and bile travel through ducts and into the small intestine where they help break down the food.

Pancreas

- The pancreas: is an elongated gland located behind the stomach and in close association with the duodenum
- The pancreas has both endocrine and exocrine functions.
- The exocrine portion of the pancreas secretes digestive enzymes and a fluid rich in bicarbonate ions.
- The high acidity of chyme coming from the stomach would inactive the pancreatic enzymes in the small intestine if the acid were not neutralized by the bicarbonate ions in the pancreatic fluid.

Liver

- The liver is located under the <u>diaphragm</u> on the right side of the upper abdomen; it lies on the right side of the stomach and makes a kind of bed for the gallbladder.
- The liver plays a major role in metabolism and has a number of functions.
- It also produces and excretes bile, which is important in digestion, it requires for dissolving fats.

Gallbladder

- The gallbladder is a pear shaped organ that stores about 50ml of bile unit the body needs it for digestion, the gallbladder is dark green in appearance due to its contents (bile), not its tissue.
- Bile is stored between meals in the gallbladder. At mealtime, it is squeezed out of the gallbladder, through the bile ducts, and into the intestine to mix with the fat in food.

Neural and endocrine regulation of the digestive system

- Neural and endocrine control mechanisms modify the activity of the digestive system
- Neural regulation
- The GI tract has it is own nervous system, known as the enteric nervous system, in the form of two nerve networks:
- 1. Myenteric plexus, lies between longitudinal and circular muscles layers
- 2. Meissners or submucous plexus, lies in the submucosa.

- In addition, nerve fibers from both the sympathetic and parasympathetic branches of the autonomic nervous system enter the intestinal tract and synapse with neurons in both plexuses:
- **1. Parasympathetic nervous** stimulate motility and secretions of the gastrointestinal tract.
- 2. Sympathetic nerves the effects to reduce peristalsis and secretory activity and stimulate the contraction of sphincter muscles along the GI tract

- It should be noted that not all neural reflexes are indicated by signals within the tract.
- The sight or smell of food and the emotional state of an individual can have significant effects on the GI tract, effects that are mediated by the CNS via autonomic neurons.

Hormonal regulation:

- The major hormones that control the functions of the GI system are produced by endocrine cells in the mucosa of the stomach and small intestine.
- One surfaces of each endocrine cell is exposed to the lumen of the GI tract.
- At this surface, various chemical substances in the chyme stimulate the cell to release its hormones from the opposite side of the cell into the blood.

The main hormones that control digestion and their effects are summarized in the following table

Hormone.	Secreted by	Stimuli for	Effects
Gastrin	Stomach	Amino acids, peptides in stomach	Stimulates parietal cells to secrete HCI. Stimulates chief cells to secrete pepsinogen.
Secretin	Small intestine	Acid in small intestine	Stimulates secretion of bicarbonate by pancreas.
Cholecystokinin (CCK)	Small intestine	Amino acids, fatty acids in small intestine	Stimulates contraction of gallbladder. Stimulates secretion of pancreatic enzymes. Inhibits gastric motility and secretion.
Glucose-dependent insulinotropic peptide (GIP)	Small intestine	Glucose, fat in small intestine	Stimulates secretion of insulin from pancreatic islets. Inhibits gastric motility and secretion.

Gastrointestinal Hormones

The Circulatory System

Lec.Dr.Ruwaidah F. Khaleel

The Circulatory System

- <u>The circulatory system</u> consists of a muscular chambered heart, a network of closed Branching blood vessels and blood, the fluid which is circulated. Together, the heart and blood vessels comprise the *cardiovascular system*.
- Humans have a closed circulatory system; this means that the blood is always contained in tubes and vessels.
- The circulatory system has the following three main functions:
- 1. It transports gases, nutrients, waste materials, and chemical substances from one part of the body to the other.
- 2. It regulates internal temperature by altering the blood flow through the skin..
- 3. It protects against blood loss from injury and against disease-causing microbes or toxic substances.

The Heart

- <u>The heart</u> is a muscular cone-shaped organ about the size of a closed fist; it is located in the center of the thorax between the lungs, slightly tilted to the left.
- > The heart wall is composed of three layers of tissue:
- 1. The Epicardium
- 2. The Myocardium
- 3. The Endocardium.

The heart has four chambers:

- 1. Two relatively small upper chambers called **atria**
- 2. Two larger lower chambers called **ventricles**.
- The heart can be thought of as two pumps sitting side by side. Vertically dividing the two sides of the head is a wall, known as the **septum**.

من خلال مضخات

 The septum prevents the mixing of oxygenated (left side) and deoxygenated (right side) blood.

- The blood pumped by the right ventricle enters the pulmonary artery, whereas the left ventricle pumps blood into the aorta.
- The deoxygenated blood pumped into the pulmonary artery is passed on to the lungs from where the oxygenated blood is carried by the pulmonary veins into the left atrium. This pathway constitutes the **pulmonary** circulation.

- oxygenated blood entering the aorta is carried **by** a network of arteries, arterioles and capillaries to the tissues from where the deoxygenated blood is collected by a system of venules, veins and vena cava and emptied into the right atrium. This is the systemic circulation.
- The heart itself is supplied by blood vessels that are in the heart muscle; the movement of blood through the heart tissues is called cardiac circulation.

Heart-Valves

- The heart has four valves inside it. These valves ensure that blood flows in the correct direction.
- The atria and ventricles are separated from each other by two valves called atrioventricular valves.
- 1. The atrioventricular valve on the right side is called the **tricuspid valve** because it is made up of three flaps.
- 2. The atrioventricular valve on the left side is called the **bicuspid valve (or mitral valve)** because it has only two flaps.
- The aorta and pulmonary trunk possess aortic and pulmonary semilunar valves, respectively. They so called because of their half-moon shape. The valves in the heart allows the flow of blood only in one direction, i.e., from the atria to the ventricles and from the ventricles to the pulmonary artery or aorta. These valves prevent any backward flow.

Cardiac Cycle <u>The cardiac cycle</u> is the sequence of events in

- one heartbeat. In its simplest form, the cardiac cycle is the simultaneous contraction of both atria, followed a fraction of a second later by the simultaneous contraction of both ventricles.
- A heartbeat has two phases:
- Phase 1: Systole is the term for contraction. This occurs when the ventricles contract, closing the atrioventricular valves and opening the semilunar valves to pump blood into the two major vessels leaving the heart.
- Phase 2: Diastole is the term for relaxation. This occurs when the ventricles relax, allowing the back pressure of the blood to close the semilunar valves and opening the atrioventricular valves.

- During each cardiac cycle two prominent sounds are produced which can be easily heard through a stethoscope.
- The first heart sound (lub) is associated with the closure of the tricuspid and bicuspid valves
- the second heart sound (dub) is associated with the closure of the semilunar valves.
- These sounds are of clinical diagnostic significance. If any of the valves do not close properly, an extra sound called **heart murmur** may be heard.

Cardiac Output and Stroke Volume

- cardiac output: The amount of blood pumped by the heart is often and is measured in ml/min. Cardiac output is an indicator of the level of oxygen delivered to the body.
- Two factors contribute to cardiac output:
- heart rate is the number of heart beats per minute
- stroke volume. is the amount of blood forced out of the heart with each heartbeat.

To increase cardiac output

Increase stroke volume or

Increase heart rate or increase both

• Cardiac output = heart rate * stroke volume.

- The average person has a stroke volume of about 70 ml and a resting heart rate of about 70 beats per minute.
- This means that the cardiac output for a typical adult at rest is **70 * 70**, or **4900** ml/minute.
- Recall that the average adult human has about 5 L of blood in their circulatory system.

Contraction of the Heart

- Within the heart, a bundle of specialized muscle tissue, called the sinoatrial (SA) node, stimulates the muscle cells to contract and relax rhythmically.
- The SA node is also referred to as the pacemaker, because it sets the pace for cardiac activity.
- The SA node is in the wall of the right atrium, it generates an electrical signal that spreads over the two atria and makes them contract simultaneously.

- As the atria contract, the signal reaches another node, called the atrioventricular (AV) node,
- The AV node transmits the electrical signal through a bundle of specialized fibers called the **bundle of His**.
- These fibers relay the signal through two branches of bundles that divide into fast conducting Purkinje fibers.
- The Purkinje fibers initiate the almost simultaneous contraction of all cells of the right and left ventricles.

- A wave of contraction is initiated by the SA node, which forces blood from the atria into the ventricles.
- A subsequent wave of contraction begins at the apex of the heart causing the ventricles to forcibly expel blood into the pulmonary artery and the aorta.

The Electrocardiogram (ECG)

- The electrical pulses that cause the heart to beat create small voltage changes that can be measured by electrodes placed on the skin of the chest.
- These voltage measurements produce an electrocardiogram (ECG) that physicians use to diagnose the health of the heart.
- This type of machine (electrocardiograph) is used to obtain an electrocardiogram (EGG).
- ECG is a graphical representation of the electrical activity of the heart during a cardiac cycle.

- To obtain a standard ECG, a patient is connected to the machine fifth three electrical leads (one to each wrist and to the left ankle) that continuously monitor the heart activity.
- Each peak in the ECG is identified with a letter from P to T that corresponds to a specific electrical activity of the heart.

- The P-wave: represents the depolarization of the atria, which leads to the contraction of both the atria.
- The QRS complex: represents the depolarization of the ventricles, which initiates the ventricular contraction. The contraction starts shortly after Q and marks the beginning of the systole.
- The T-wave: represents the return of the ventricles from excited to normal state (repolarization). The end of the Twave marks the end of systole.

Regulation of Cardiac Activity

- Normal activities of the heart are regulated intrinsically, ie., auto regulated by specialized muscles (nodal tissue), hence the heart is called myogenic.
- A special neural center in the medulla oblongata can moderate the cardiac function through autonomic nervous system (ANS).
- Neural signals through the:
- Sympathetic nerves (part of ANS) can increase the rate of heart beat, the strength of ventricular contraction and thereby the cardiac output.
- 2. Parasympathetic neural signals (another component of ANS) decrease the rate of heart beat, speed of conduction of action potential and thereby the cardiac output. Adrenal medullary hormones can also increase the cardiac output..

Blood vessels

- There are three main types of blood vessels in the human body.
- 1. **Arteries** carry blood away from the heart
- 2. **veins** carry blood toward the heart.
- Smaller-diameter arteries are called arterioles,
- smaller-diameter veins are called **venules**,
- 3. A network of **capillaries** joins the arteries and arterioles with venules and veins.
- The one-cell-thick capillaries are the sites where gases, nutrients, and other materials are transferred from blood to tissue cells and from tissue cells to blood

Artery versus Vein

- The wall of the artery is thicker.
- The lumen of the artery is much narrower.
- Arteries do not have valves along their length, veins do.
- Blood flows away from the heart in arteries; blood flows towards the heart in veins.
- Blood pressure in arteries is higher and so also the speed of blood flow.
- Pulsed flow in an artery, steady flow in a vein.

Capillaries

- <u>Capillaries</u> are the link between arteries and veins - where exchange with tissues occurs, the capillary wall is one cell thick and somewhat porous — ideal to allow materials to pass in and out.
- All tissue cells very close to capillary so exchange is very efficient.
- Exchange at the capillaries is by diffusion, mass flow and active transport.
- Blood flow in capillaries is slow giving enough time for effective exchange.

Blood and Its Components

- An average adult human has about 5 liters of blood moving continuously through the circulatory system. Blood consists of two distinct elements:
- The fluid portion, called plasma, consists of water plus dissolved gases, proteins, sugars, vitamins, minerals, and waste products.
 Plasma makes up about 55% of the blood volume.
- 2. The solid portion of the blood consists of red blood cells, white blood cells, and platelets. These cells and platelets are produced in the bone marrow. The. solid portion makes up the other 45% of the blood volume.

Plasma and Its Functions

- Plasma is a clear, yellowish fluid composed of about 92% water and 7% dissolved blood proteins. The remaining 1% percent of plasma Consists of other organic substances and inorganic ions such as sodium, potassium, chloride, and bicarbonate.
- The main proteins in blood are albumin, globulins, and fibrinogen. Other substances transported by the blood include nutrients (glucose, fatty acids, and vitamins), respiratory gases (02and C02), and the waste products of metabolism.

Normal

	RBCs	WBCs
Physical features	RBCs are bi-concave disc shaped, and have no nucleus. size is roughly approximately 6-8 μm	WBCs are irregular in shape, but have a nucleus and an outer buffer coat.
Life span	120 days.	4-30 days depending on body
Types	There is only one type of RBCs found in the blood.	There are various types of WBCs with distinct functions in the blood:neutrophils, T lymphocytes, B lymphocytes (plasma cell) monocytes (macrophage), eosinophils, basophils.
Circulatory system	Cardiovascular system	Cardiovascular and lymphatic systems.
Functions	Supplies oxygen to different parts of the body and carries carbon dioxide and other waste products.	Producing antibodies to develop immunity against infections. Some are phagocytic
Production	Produced in red bone marrow.	Produced in lymph nodes, spleen, etc.
Movement	they move in blood vessels eventually squeezing through capillaries giving O2 and nutrients to body cells.	they leave the blood vessels and move to the injury site. Capable of diapedesis- squeeze between cells of blood vessel walls to exit circulation.
Nuclei	RBC do not have nuclei in humans	WBC have nuclei in humans
Platelets and Their Functions

- Platelets (also called thrombocytes) are the third major substance in the solid portion of the blood.
- Platelets are membrane-bound fragments of cells that form when larger cells in the bone marrow break apart.
- Platelets do not contain nuclei and they breakdown in the blood within 7 to 10 days after they have formed.
- Platelets play a key role in clotting blood, which prevents excessive blood loss after an injury.

Blood Pressure

- As blood passes through the vessels in the body, it exerts pressure against the vessel walls. This, is called <u>blood pressure.</u>
- Changes in blood pressure correspond to the phases of the heartbeat. When the ventricles contract and force blood into the pulmonary arteries and the aorta, the pressure increases in these vessels.
- The maximum pressure during the Ventricular contraction is called systolic pressure. The phase during which this occurs is called systole.
- The ventricles then relax and the pressure in the pulmonary arteries and the aorta drops.
- The lowest pressure before the ventricles contract is called the **diastolic pressure**. The phase during which this occurs is called *diastole*.

- A blood pressure reading shows how much pressure the blood exerts against the vessel walls and indicates the condition of the heart and arteries.
- Blood pressure is usually measured at an artery in the arm, using a device called a **sphygmomanometer**.
- The systolic pressure is presented over the diastolic pressure in the form of a fraction. The blood pressure of an average healthy young person is below 120 mmHg over 80 mmHg, or 120/80 (systolic/diastolic).

Blood pressure is affected by:

- 1. Genetics
- 2. Activity
- 3. Stress
- 4. Body temperature
- 5. Diet
- 6. Medications

 However, continuous high blood pressure, also called hypertension, causes the heart to work harder for extended periods of time. This can cause damage to arteries and increases the risk of heart attack, stroke, and kidney failure.

Blood Group

- Various types of grouping of blood have been done. Two such groupings, the ABO and Rh, are widely used all over the world.
- ABO grouping is based on the presence or absence of two surface antigens (chemicals that can induce immune response) on the RBCs namely A and B. Similarly, the plasma of different individuals contains two natural antibodies (proteins produced in response to antigens).
- During blood transfusion, any blood cannot be used; the blood of a donor has to be carefully matched with the blood of a recipient before any blood transfusion to avoid severe problems of dumping (destruction of RBC).

- Rh grouping is based on the another antigen, the Rh antigen similar to one present in Rhesus monkeys (hence Rh), is also observed on the surface of RBCs of majority (nearly 80 percent) of humans.
- Such individuals are called Rh positive (Rh+ve) and those in whom this antigen is absent are called Rh negative (Rh-ve).
- An Rh-ve person, if exposed to Rh+ve blood, will form specific antibodies against the Rh antigens. Therefore, Rh group should also be matched before transfusions.
- A special case of Rh incompatibility (mismatching) has been observed between the Rh-ve blood of a pregnant mother with Rh+ve blood of the fetus.

Immense Immunology Insight

 Rh antigens of the fetus do not get exposed to the Rh-ve blood of the mother in the first pregnancy as the two bloods are well separated by the placenta. However, during the delivery of the first child, there is a possibility of exposure of the maternal blood to small amounts of the Rh+ve blood from the fetus, in such cases, the mother starts preparing antibodies against Rh antigen in her blood.

- In case of her subsequent pregnancies, the Rh antibodies from the mother (Rh-ve) can leak into the blood of the fetus (Rh+ve) and destroy the fetal RBCs. This could be fatal to the fetus or could cause severe anemia and jaundice to The baby. This condition is called **erythroblastosis fetalis.**
- This can be avoided by administering anti-Rh antibodies to the mother immediately after the delivery of the first child.

19-24

The Lymphatic System

Lec.Dr.Ruwaidah F. Khaleel

The Lymphatic System

- Water and plasma are forced from the capillaries into intracellular spaces; this interstitial fluid transports materials between the cells. Most of this fluid is collected in the capillaries of a secondary system which is called the lymphatic system.
- The lymphatic system consists of:
- 1. Fluid (lymph).
- 2. Lymphatic vessels that transport the lymph.
- 3. Lymphatic organs.

The lymphatic system has three basic functions:

- 1. Removal of excess fluids from body tissues and its return to the bloodstream.
- 2. Absorption of fatty acids and subsequent transport to the blood.
- 3. Formation of white blood cells, and initiation of immunity through the formation of antibodies.

Lymphatic Vessels and Ducts

• The lymphatic vessels are similar in structure to the cardiovascular veins, meaning they also have **valves**.

<u>They are dependent upon:</u>

- 1. The contraction of skeletal muscle.
- 2. Respiratory movements and valves that do not allow backward flow.

The vessels merge before entering one of two ducts:-

i. Thoracic duct: This

duct serves the abdomen, lower extremities and the left side of the upper body.

 ii. <u>Right lymphatic</u> <u>duct:</u> This duct serves all of the right side of the upper body and thoracic area.

Lymphatic Ducts

Right Lymphatic Duct empties at junction of right internal jugular and right subclavian veins

Thoracic Duct - empties into junction of left internal jugular and left subclavian veins

Cisterna Chyli – most inferior part of thoracic duct

Lymphatic Organs

- Lymphatic organs are subdivided into:
- The primary lymphatic organs are the red bone marrow and the thymus.
- Function: They are the site of production and maturation of lymphocytes, the type of white blood cell that carries out the most important work of the immune system.

The secondary lymphatic organs

- Include the lymph nodes, spleen, tonsils, Peyer's patches, and the appendix.
- Function: They also play an important role in the immune system as they are places where lymphocytes find and bind with antigens.

Red Bone Marrow

- It is soft, spongy, nutrient rich tissue in the cavities of certain long bones.
- Function:
- 1. Is the organ that is the site of blood cell production.
- 2. Is the site of maturation of B lymphocytes.

Thymus Gland

- It is a soft organ with two lobes that is located in the upper thoracic cavity posterior to the sternum.
- It is divided into: an outer cortex and an inner medulla.
- It is an organ that is more active in children, and shrinks as we get older.
- T- lymphocytes mature in the thymus.
- the thymus gland produces a hormone, thymosin which thought to aid in the maturation of T- lymphocytes.

Lymph nodes

- The lymph nodes are small oval shaped structures located along the lymphatic vessels.
- Function: They act as filters, with an internal connective tissue filled with lymphocytes that collect and destroy bacteria and viruses.
- They concentrated in the neck, armpit, groin, and abdominal cavity.

The spleen

- It is the largest of the lymphatic organs and lies in the left part of the abdominal cavity between the stomach and the diaphragm.
- It is divided into two partial compartments:
- 1. White pulp contains lymphocytes.
- 2. Red pulp contains venous sinuses.
- Function: When blood enters the spleen and flows through the sinuses for filtration, lymphocytes react to pathogens; macrophages engulf debris and remove old, worn out red blood cells.

Tonsils

- Are a group of small rounded organs in the pharynx.
- They are filled with lymphocytes, macrophages, and macrophage-like cells.
- Function: Their lymphocytes respond to microbes that arrive by way of ingested food as well as inspired air.

Peyer's patches

 Are lymphoid tissues found in the wall of the small intestine, although they're more concentrated in the ileum.

Appendix

- Its extends from the inferior end of the large intestine's cecum.
- The sub-mucosa of the appendix contains many masses of lymphoid tissue.
- The presence of lymphoid tissue suggests that the appendix **my play a role in immune system.**

Lec.Dr.Ruwaidah F. Khaleel

Respiratory system or Respiratory tract

- It is the path of air from the nose to the lungs.
- The organs of the respiratory system ensure that oxygen enters the body and carbon dioxide leaves the body. As air moves along the respiratory tract, it is cleansed, warmed, and moistened.

Anatomically, the respiratory tract is divided into two sections:

Upper respiratory tract

- Upper respiratory tract includes the organ located outside of the chest cavity(i.e. nose, nasal cavity, pharynx, and larynx).
- Its primary function: is to receive the air from the external environment and filter, warm and humidity it before it reaches the lungs where gas exchange will occur.
- <u>The nose</u>: opens at the nostrils through which air enters and is partially filtered by the nose hairs, then flows into the nasal cavity.

The nasal cavity

 is lined with epithelial tissue, containing blood vessels which help warm the air; and secrete mucous which further filters the air. The endothelial lining of the nasal cavity also contains tiny hair-like projections called <u>cilia</u> which serve to transport dust and other foreign particles, trapped in mucous, to the back of the nasal cavity and to the pharynx. There the mucus is either coughed out, or swallowed and digested by powerful stomach acids.

The pharynx

• Is a tube-like structure that connects the nasal and oral cavities to the larynx and esophagus.

The tonsils

 Which are part of the lymphatic system form a ring at the connection of the oral cavity and the pharynx, they protect against foreign invasion of antigens, therefore the respiratory tract aids the immune system through this protection. Then the air travels through the larynx.

The larynx

- known as the voice box because it contains vocal cords, in which it produces sound.
- Sound is produced from the vibration of the vocal cords when air passes through them. In order for the larynx to function and produce sound, we need air. That is why we can't talk when we're swallowing.

Epiglottis

 Located At the top of the larynx which acts as a flap that closes off the trachea during the act of swallowing to direct food into the esophagus instead of the trachea. Stimulation of the larynx by ingested matter produces a strong cough reflex to protect the lungs.

Lower respiratory tract

- Lower respiratory tract includes the organs located almost entirely within the chest cavity (ie. Trachea, bronchi, bronchioles, and alveoli).
- The trachea (windpipe) is a hollow tube connecting the larynx to the primary bronchi.
- It has ciliated cells and mucous secreting cells (goblet cells) lining it, and is held open by 18 to 20 C-shaped cartilage rings.

 its functions is protection from dust and other particles. The trachea lies ventral to the esophagus, the open part of the C-shaped rings faces the esophagus, and this allows the esophagus to expand when swallowing.

- The trachea divides into right and left primary bronchi which lead into the right and left lungs.
- The bronchi branch into a great number of secondary bronchi that eventually lead to bronchi The bronchi resemble the trachea in structure, but as the bronchial tubes divide and subdivide their walls become thinner and the small rings of cartilage are no longer present.

- During an asthma attack, the smooth muscle of the bronchioles contracts causing bronchioiar constriction and characteristic wheezing
- Each bronchiole supplies air to a lobule of the lung composed of tiny air sacs called *alveoli*.
- The components of the bronchiole tree beyond the primary bronchi compose the lungs.

- The lungs are paired, cone-shaped organs that occupy the thoracic cavity, except for the central area that contains the trachea, the heart, and esophagus.
- The right lung has three lobes
- The left lung has two lobes, allowing room for the heart, which points left. A lobe is further divided into lobules, and each lobule has a bronchiole serving many alveoli.
- The lungs have about 300 million alveoli, with a total cross sectional area of 50-70 m². Each alveolar sac is surrounded by blood capillaries; the wall of the sac and the wall of the capillary are largely simple squamous epithelium—thin flattened cells—and this facilitates gas exchange.

The function of the respiratory system:

- supply the body with oxygen and remove carbon dioxide.
- serves for regulation of blood pH, defense against microbes.
- 3) Control of body temperature.

The organs of the respiratory system can be divided functionally into:

- A. <u>The conducting zone</u>: is the airway from the nose or mouth down to the bronchioles; it is responsible for transporting air and any foreign particles.
- B. <u>The respiratory zone:</u> includes the respiratory bronchioles down to the alveoli, where gas exchange takes place through a diffusion process.

Respiration Physiology There are four processes of respiration:-

- **1. Breathing or Ventilation**
- 2. External respiration
- 3. Internal respiration
- 4. Cellular respiration

Breathing or Ventilation

- Breathing is the exchange of air between the external environment and the alveoli.
- There are two phases of ventilation:
- Inspiration (inhalation)
- Expiration (exhalation).
- Air moves into the lungs from the nose or mouth during inspiration and then moves out of the lungs during expiration. During each phase the body changes the lung dimensions to produce a flow of air either in or out of the lungs depending on the pressure in the alveoli.

 All pressures in the respiratory system are relative to atmospheric pressure (760 mmHg at sea level). Air moves from an area of high pressure to low pressure. The body changes the pressure in the alveoli by changing the volume of the lungs; as volume increases pressure decreases and as volume decreases pressure increases.

- External respiration: is the exchange of gases (oxygen and carbon dioxide) between the air in the alveoli and the blood within the pulmonary capillaries.
- Internal respiration: Internal respiration is the exchange of gases (oxygen and carbon dioxide) between the blood and tissue fluids.

 <u>Cellular respiration</u>: Cellular respiration, also called aerobic respiration, is the process of moving energy from one chemical form (glucose) into another (ATP), since all cells use ATP for all metabolic reactions. It is in the mitochondria of the cells where oxygen is actually consumed and carbon dioxide produced.

Respiration Physiology

Inspiration	Expiration	
1) It is an active process.	1) It is a passive process.	
2) Contraction of external intercostal muscles and relaxation of internal intercostal muscles occur.	2) Relaxation of external intercostal muscles (muscles present between ribs) and contraction of internal intercostal muscles occur.	
 Rib cages move forward and out - ward. 	3) Rib cages move downward and inward.	
4) Diaphragm contracts and becomes flattened.	 Diaphragm relaxes and becomes original dome shaped. 	
5) Increase in volume of thoracic cavity.	5) Decrease in volume of thoracic cavity.	
6) Air pressure in lungs is less than atmospheric pressure.	6) Air pressure in lungs is greater than atmospheric pressure.	
7) Intake of air into lungs.	7) Expulsion of air from the lungs.	

Intercostal Muscles

Gas exchange

- Respiration includes the exchange of gases in the lungs and the exchange of gases in the tissues.
- Gases exert pressure, and the amount of pressure each gas exerts is called its partial pressure.
- The exchange of O2 and CO2 occurs through <u>diffusion</u> which is the net movement of gas molecules from a region that has a higher partial pressure to another region that has a lower partial pressure.

- <u>External respiration</u> refers to the exchange of gases between air in the alveoli and blood in the pulmonary capillaries.
- External respiration mechanism
 - Gases diffuse in either direction across the walls of the alveoli
 - O2 diffuses from the air into the blood and CO2 diffuses out of the blood into the air.
 - Most of the CO2 is carried to the lungs in plasma as bicarbonate ions (HCO3').
 - When blood enters the pulmonary capillaries HCO3" and H⁺ are converted to carbonic acid (H2CO3) and then back into CO2 and H2O
- The enzyme carbonic anhydrase, present in red blood cells, speeds the breakdown of H2CO3.
 - The pressure pattern for O2 during external respiration is the reverse of that for CO2.
 - Blood in the pulmonary capillaries is low in 02, and alveolar air contains a higher partial pressure of O2.
 - O2 diffuses into plasma and then into red blood cells in the lungs.
 - Hemoglobin takes up this O2 and becomes oxyhemoglobin (Hb02).

- Deoxygenated blood coming from the pulmonary arteries, generally has PO2 of 40 mmHg and PCO2 of 45 mmHg.
- Oxygenated blood leaving the lungs via the pulmonary veins has PO2 of 100 mmHg and PCO2 of 40 mmHg.

- <u>Internal respiration</u> refers to the exchange of gases between the blood in the systemic capillaries and the tissue fluid.
 - Internal respiration mechanism
- Oxygen diffuses out of the blood into the tissues because the PO2 of tissue fluid is lower than that of blood.
 - Carbon dioxide diffuses into the blood from the tissues because the PCO2 of tissue fluid is higher than that of blood.
 - After CO2 diffuses into the blood
- Enters the red blood cells, where a small amount is taken up by hemoglobin, forming carbaminohemoglobin (HbC02).
- Most of the CO2 combines with H2O forming H2CO3, which dissociates to H⁺ and HCO3.
 - HCO3' diffuses out of red blood cells and is carried in the plasma.
 - The globin portion of hemoglobin combines with excess H⁺ produced by the overall reaction

• Hb becomes reduced hemoglobin (HHb).

Regulation of Respiration

- Normal adults have a breathing rate of 12-20 respirations per minute.
- The rhythm of ventilation is controlled by a <u>respiratory center located in</u> <u>the medulla oblongata of the brain.</u>

- The respiratory center stimulates the diaphragm to contract via the phrenic nerve
- Stimulates the external intercostal muscles to contract via the intercostal nerves.
- Expiration occurs due to a lack of stimulation from the respiratory center to the diaphragm and intercostal muscles.

 Although the respiratory center automatically controls the rate and depth of breathing, its activity can also be influenced by nervous input and chemical input.

- Nervous Input:
- Following forced inspiration
- Stretch receptors in the alveolar walls
- Initiate inhibitory nerve impulses that travel from the inflated lungs to the respiratory center.
- This stops the respiratory center from sending out nerve impulses.

- Chemical Input: The respiratory center is directly sensitive to the levels of H⁺.
 - When CO2 enters the blood
 - It reacts with H2O and releases H⁺.
 - CO2 participates in regulating the breathing rate.
 - When H⁺ rises in the blood
 - The respiratory center increases the rate and depth of breathing.
 - The center is not affected directly by low O2 levels.
- Chemoreceptors in the carotid bodies, located in the carotid arteries, and in the aortic bodies, located in the aorta, are sensitive to the level of O2 in the blood.
- When the concentration of O2 decreases, these bodies communicate with the respiratory center, and the rate and depth of breathing increase.

Lung Volumes and Capacities

- Several terms have been developed to describe the various physiological volumes and capacities of the lung.
- Normally lung volumes are measured with a spirometer, and its lung capacity is then inferred from the measurements.

Lung volumes and capacities

Volume or Capacity	Definition	Typical value
Tidal volume (TV)	The volume of air that is inspired and exhaled during normal breathing at rest.	500 ml
Inspiratory reserve volume (IRV)	The maximum volume that can be inhaled above the tidal volume.	3000 ml
Expiratory reserve volume (ERV)	The maximum volume of air that can be expired after the expiration of a tidal volume.	1100 ml
Residual volume (RV)	The volume of air in the lungs after maximal expiration.	1200 ml
Functional residual capacity (FRC)	The volume of air left in the lungs that can be exhaled after normal expiration.	2300 ml
inspiratory capacity (1C)	The volume of maximum inhalation.	3500 ml
Vital capacity (VC)	The maximal volume of air that can be expelled following maximal inspiration.	4600 ml
Total lung capacity (TLC)	The volume of gas in the lungs following maximal inspiration.	5800 ml

Reproductive system Male reproductive system

Lec.Dr.Ruwaidah F. Khaleel

I. Physiologic anatomy :

- Male reproductive system is composed of :
- 1. <u>Primary productive organ (Testes)</u>: Testes is considered to be a primary reproductive organ, because it produces the male gametes (spermatozoa), and the male reproductive hormones (androgens) as well.
- Human has two testes that are located in the scrotum outside the abdomenopelvic cavity, because the optimal temperature, which is necessary for the spermatogenesis has to be 1C degree lower than that of the body basal temperature.
- The two testicles composed of skin and subcutaneous tissue and dartos muscle fibers . The contraction of muscle fibers causes the wrinkled appearance of the scrotum in cold and during sexual excitement .

Embryologically :

 formation of the testes started inside the abdominal cavity, and then it emigrates down until being located in the scrotum after passing the inguinal canal (Note that the testicular artery that supply the testes with blood is a branch of the abdominal aorta). Emigration of testes occurs by the effect of testosterone, that is released by the testes itself.

 Testes has a volume of 15-30 mm (individualdependent). Its internal structure is composed of hundreds (average 300 of lobules separated by septules of connective tissue .Each lobule is composed of a single or more highly convoluted seminiferrous tubuli. Testicular tubules start and end at rete testis.

- The basal layer of the germinative epithelium of tubules is composed of sertoli cells that surround the germ cells (spermatogonia). The role of sertoli cell is to nourish the spermatogonia, to get rid of spermatid remains by phagocytosis, to form testes-blood barrier, and to secrete the hormone (inhibin). Inhibin hormone regulates FSH by feedback mechanism.
- Leydig cells are found between the sertoli cells , and secretes testosterone , which is produced by their smooth endoplasmic reticulum under the effect of LH hormone.

2. Secondary productive organ (ducts and exocrine organs):

Epididymis is a coiled tubular organ, extending from the upper to the lower pole of the testis and it is the site for maturation and storage of sperm cells. Sperm cells become mobile only in the epididymis

<u>Vas deferens</u> connects epididymis to the urethra , and shortly before the prostate gland it is enlarged to form an ampula.

Glands of the male reproductive system :

Seminal vesicle gland: a 1. paired gland posterior to the urinary bladder. It contributes to about 60% of the semen. Its fluid is alkaline and is responsible of alkaline reaction of the seminal fluid. It provides nutrients to the sperm cell as its secretion involves high fructose concentration. Its secretion also involves proteins, vitamin C, flavin, and prostaglandins.

2. Prostate gland: Found inferiorly to the urinary bladder in front of the rectum, which makes it accessible for palpitation per rectum for diagnostic purposes. Its secretion contains some proteolytic enzymes (such as fibrinolysins, hyaluronidas acid, phosphatase) and zinc. It also secretes the acidic citrate. Vas deference pass through the prostate gland, and thus contraction of smooth muscles of the prostate assists in ejaculation. In the prostate gland the ejaculatory duct join vas deferens.

3. Bulbourethral glands (Cowper`s gland) : found at the base of the penis. Their secretion is released during male sexual desire to flush urine out and to help sperm cells to pass. It also neutralizes the acidic urine.

- **Penis:** is the organ of sexual act and micturition in male .
- Penis has three pats :
- 1) <u>Root</u>, that links it to the body.
- 2) <u>Shaft or body</u> It is composed of two (corpora cavernosa) and corpus spongiosum. The shaft is covered by loose skin to adjust to the size of penis during erection.
- 3) <u>Glans penis</u>: composed of enlargement of corpus spongiosum ,which is covered by bulbospongeosus muscle. The glans penis is rich with nerves. <u>The foreskin</u> is a thin skin that covers the glans and may be cut during circumcision. Urethra transverse corpus spongiosum and open in the center of glans penis (meatus).

 The three corpora of the penis are composed of blood arterioles that are filled with blood during erection and impair the venous return, which sustain the erection.

II. Testicular hormones :

1. Androgens :

Androgens are anabolic steroid hormones, which has many reproductive and none-reproductive functions. Testosterone is the representative androgen, which is produced and released by the Leydig's cells of the testes under the control of LH hormone of the pituitary gland (which is under the control of GnRH of the hypothalamus).

Testosterone has the following functions :

I. Metabolic functions: Testosterone is an anabolic hormone which enhances protein synthesis, increases muscle and bone mass and acceleration of bone maturation. and prevents osteoporosis.

II. Androgenic functions: These functions continue from intrauterine life till the end of life. ex:ample:

- 1. Gender determination.
- 2. Migration of the testes.
- 3. Appearance of secondary sexual signs during puberty and pre-puberty (axillary hair, pubic hair, hair on the upper lip and sides of face, Adam's apple, deepening of voice.
- 4. Growth of spermatogenic tissue in the testes.
- 5. Increases libido.
- 6. Growth of prostate gland and seminal vesicle.

2. Testicular Inhibin : A protein hormone , released by Sertoli cells , under the effect of androgens . It inhibits FSH hormone and Gonadotropin Releasing Hormone as well . Inhibin also participates in local regulation of spermatogenesis .

<u>3. Testicular Activin</u>: It is also a protein hormone that has a similar structure to inhibin . It enhances the effect of FSH and LH on the testes . It also activates spermatogenesis.

III. Male sexual response cycle :

The male sexual cycle is the response of the male organism to sexual stimulation. Sexual stimulation could be achieved mechanically through the mechanical stimulation of the mechanoreceptors on the glans of the penis , or by psychogenic stimulation (thinking of sex , watching , hearing , smelling) .

The cycle is composed of four phases :

<u>1. Excitement phase :</u> In this phase the male organism is prepared for sexual intercourse. Erection occurs as a result of sexual stimulation (physical or mental). The testicles are drawn upward, while the scrotum is thickening. mechanism of erection : It is initiated by parasympathetic nervous system . Nerve branches from the sacral plexus release acetylcholin, which causes endothelial cells of the trabecular arteries to release nitric oxide, which then is transported by blood to the smooth muscles of the same arteries, dilating them and causing filling of corpora cavernosa and corpus spongiosum with blood.

EXCITEMENT

• 2. Plateau phase :

During this phase the heart rate, respiratory rate, muscle tone, and arterial blood pressure increase. The urethral sphincter is contracted to prevent mixing of urine with the semen as well as to prevent retrograde ejaculation , pre-ejaculatory secretion begin to secrete. Sexual pleasure increased with increased stimulation.

• 3. Orgasmic phase :

The muscles of pelvic contract with a quick cycle of contraction, ejaculation occurs, accompanied with waves of sexual pleasure. Heart rate is more increased.

• <u>4. Resolution phase :</u>

The heart rate decrease, blood pressure drop, the respiratory rate decrease, and the skeletal muscle relax. A refractory period occurs (male become unresponsive to sexual stimuli). Refractory period in male is individually varied (the range is about 20 minutes).

The Male Sexual Response Cycle

IV. Semen:

- The seminal fluid is the fluid that is ejaculated during the male orgasm. The amount of semen varies (average 2.5-3.5 ml). It is composed of the sperm cells and the secretion of reproductive glands as follow :
- Seminal vesicles : forms about 60%
- **Prostate gland :** forms about 30-35%
- sperm cells : about 5% .

Seminal fluid analysis

- Seminal fluid analysis is an important diagnostic method for male infertility. It has to be done after 3-6 days abstinence because the sperm count may decrease after frequent ejaculation.
- Each ml of seminal fluid contains 20-40 millions of spermatozoa .
- Many parameters are considered during the seminal fluid analysis :
- Sperm count
- Sperm motility : has to be more than 40% at least with progress forward motion in straight forward direction .
- Sperm morphology : different in different laboratory : 20 % normal sperm correlates with good fertility.
- **Semen:** is alkaline fluid , with cloudy white color . changes in color to yellow or green is a sign of infection . presence of blood is a sign of trauma , severe infection or rarely cancer

Sperm Morphology

V. Spermatogenesis :

- Spermatogenesis is the process of formation and development of sperm cells. The cycle of spermatogenesis continues for about 64 days It may be subdivided into :
- <u>1. Spermatocytogenesis</u>: Starts with first mitosis of spermatogonia (Type A spermatogonia engender type B spermatogonia by mitosis) up to primary spermatocytes (about 16 days) ,
- then first miotic division of primary spermatocytes into secondary spermatocytes (about 24 days) then the second miotic division which engenders spermatids (for few hours only).

- <u>2. Spermiogenesis</u>: Differentiation of spermatid cells up to completed mature sperm cells (about 24 days).
- Sertoli cells are necessary for spermatogenesis . They release androgen binding protein (ABP) that concentrate testosterone in the seminiferous tubules to stimulate spermatogenesis .They also release the estradiol- aromatase enzyme that convert testosterone into estrogen . Estrogen enables the tubules or rete testes to reabsorb water before reaching the epididymis , this is important because diluted sperm causes male infertility .
- Spermatid maturation into spermatozoa will not occur without the assistance of Sertoli cells.
- Spermatozoa are immobile and gain their motility only in the epididymis .

FEMALE REPRODUCTIVE SYSTEM

Lec.Dr.Ruwaidah F. Khaleel

Female reproductive system is different from that of male in :

- **1. Structurally,** most of reproductive organs are internally located. Vulva and breast are the only external female reproductive organ.
- **2. Functionally,** female reproductive system is characterized in being cyclic.

Physiologic anatomy:

- Primary reproductive organ (Ovaries): There are two ovaries (right and left), that are located on each side of the uterus in ovarian fossa (each one).
- Each ovary has the size and the shape of almond.

Ovary is composed of:

- 1. The outer cortex is covered by cuboidal epithelium (germinal epithelium), which is a continuation of peritoneum. Beneath the germinal epithelium, there is a dense connective tissue, called (Tunical albuginea). The cortex contains ovarian follicles in different stages of development
- 2. The inner medulla is composed of loose connective tissue and it is highly vascular one with cells, that are similar to Leydig's cells of the testes.
- Both ovaries are attached to the uterus by ovarian ligaments.

Secondary reproductive organs :

- 1. <u>Fallopian tubes</u>: Hollow muscular tubes , that extend from the uterus to the ovaries .
- Each tube is about 8-10 cm. long , and is composed of four segments :
- 1. <u>Infundibulum</u>: a tunel-shaped muscular segment of the tube, which has finger liked extensions, called fimbriae.
- 2. <u>Ampulla</u>: is the widest middle segment of the tube. Usually the fertilization of the ovum occurs here.
- **3.** <u>Isthmus</u>: A muscular segment and the narrowest one. It is found near the uterus. In isthmus capacitation of the sperm cells occurs.
- 4. <u>Interstitial segment of the tube</u>: is the segment which passes the uterine muscle to the uterine cavity.

The lumen of the tube is lined by endothelial cells, that involves secretory and Peg cells that nourish the ovum and zygote during its transport through the tube, and by ciliary epithelial cells that have ciliae, which moves the ovum toward the uterus.

The movement of ovum after being caught by the tubular fimbriae is assisted by the following factors:

- 1. The movement of the ciliae: hundreds time per second.
- 2. Movement of tubular fluid .
- 3. Contraction of smooth muscle cells of the uterine tubes.

- <u>2. Uterus</u>: Uterus is a hollow muscular organ with upper segment , called fundus ,corpus (body) and a lower segments , called cervix.
- The uterine wall is composed of three layers:
- 1. <u>Endometrium</u>: It is the mucous membrane that lines the uterus. It is composed of two layers :
- A. <u>Stratum basale</u>: it is a deeper layer and is not shed during the menstruation
- **B.** <u>Stratum functionalis</u>: it is shed during the menstruation
- **<u>2. Myometrium</u>**: composed of many layers of smooth muscles
- **<u>3. Epimetrium</u>**: composed of connective tissue

3. Vagina: a muscular canal that join the uterine cervix to the outside of the body. It is the site of coitus, and the birth canal. It is lined with epithelial tissue. The anterior wall of the vagina is about 8 cm long, while the posterior wall is about 10 cm long. Vaginal fornici are formed from joining the walls of vagina to the uterine cervix.

 Vaginal secretion during the sexual excitement is due in its largest share to the transudate of the vaginal capillaries

External genitalia : Include:

- Labia Majora: a fleshy, large folds of skin and subcutaneous tissue, with sweat and sebaceous glands. After the puberty the are covered by hair, and more fat is deposited in their subcutaneous tissue.
- Labia minora : smaller and thinner than labiae majorae , they are found inside them and surround the vagina and female urethra.
- <u>Clitoris</u>: a sensitive protrusion, which is rich with nerve endings. It is similar to the glans penis in the male. It is stimulated during the sexual course and may become erected. Clitoris is covered by a thin fold of skin, called prepuce.

II. Oogenesis:

Oogenesis is different from that of spermatogenesis. In the female embryo primary germ cells develop into diploid number cells oogonia that then mitotically dived into primary oocytes with diploid number.

- These oocytes are present at birth and arrested at prophase of meiosis I till puberty.
- At puberty during the cycle:
- The primary oocyte is developed into secondary meiocyte and a polar body (both contains haploid number of chromosomes).
- The secondary oocyte is arrested at metaphase of meiosis II.
- After conception meiosis II is completed.

III. Menstrual cycle

The Menstrual Cycle

	Week 1	Week 2	Week 3	Week 4
Hormones:	Low levels of estrogen and progesterone	Estrogen and testosterone levels rise, brain releases the Follicle Stimulating Hormone (FSH)	Estrogen and testosterone are at peak levels	Estrogen and testosterone levels decline, progesterone levels increase
Body:	Uterine lining sheds, causing menstrual bleeding	The follicles containing your eggs mature in ovaries	An egg is released by your ovaries	Uterine lining thickens, PMS symptoms begin

After ovulation, some of the granulosa cells remain in the ovary with the effect of the LH hormone both the granuloga cells and the theca interna of the ovary develop yellowish pigment mass of cells called corpus luteum, this mass begins secrete the prostaglandin hormone

The oocyte transport out the ovary

 The oocyte with the granulosa cells surround it are carried from the ovary by the movement of the cilia of the-ovarian tube,

• The oocyte inter the ovarian tube

- The junction between oocyte and the granulosa cells are lost,
 - The oocyte move toward the uterus.

(In the human oocyte need 3-4 days to reach the uterus after ovulation)

If fertilization not occurs

- the corpus luteum reaches its maximums development
- then shrinks and degenerate after 14 days
 - transform to corpus albicans
 - the oocyte will rupture and degenerate

If fertilization is occur

- The corpus-luteum remain active and produces and secrets the prostaglandin for 4 months
- This due to the human chorionic gonadotropin (hCG) that produced by the embryo cells, this hormone called also the pregnant hormone, keep the corpus leuteum active during this period

Copyright @ 2001 Benjamin Cummings, an imprint of Addison Wesley Longman, Inc.